$$
\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2}
$$

$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$173.8(11)$	$\mathrm{O}(12)-\mathrm{C}(8)-\mathrm{C}(7)$	$109.3(9)$
$\mathrm{O}(12)-\mathrm{C}(8)-\mathrm{C}(9)$	$103.3(8)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$108.8(8)$
$\mathrm{O}(12)-\mathrm{C}(8)-\mathrm{C}(10)$	$111.6(8)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(10)$	$110.5(9)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(10)$	$113.0(9)$	$\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{C}(11)$	$118.1(11)$
$\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{C}(15)$	$126.4(10)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)$	$115.6(12)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$120.6(13)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$121.9(13)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$116.6(14)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$123.2(12)$
$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$	$122.1(10)$	$\mathrm{C}(3)-\mathrm{C}(16)-\mathrm{C}(17)$	$121.2(11)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$119.9(12)$	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$120.5(13)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$121.1(11)$	$\mathrm{C}(3)-\mathrm{C}(20)-\mathrm{C}(19)$	$120.1(10)$

2,7-Diphenyl-3,5-octadiyne-2,7-diol (I) was prepared by treatment of (\pm)-2-phenyl-3-butyn-2-ol dissolved in methanol containing pyridine with cuprous chloride in an oxygen-containing atmosphere. Diastereomeric (I) was isolated in near quantitative yield as an off-white solid melting over a wide range (313473 K). Recrystallization from benzene gave the less-soluble diastereomer as colorless needles; m.p. 472-473 K (literature value 465 K; Strauss, Kollek \& Hauptmann, 1930). Suitable crystals for X-ray analysis were obtained from the same solvent by slow evaporation.

The mother liquors from meso-(I) were systematically pooled and, following several recrystallizations from benzene, produced the more-soluble diastereomer; m.p. 420-421 K (literature value 415-416 K; Popova, 1959). Suitable crystals for Xray analysis were slowly grown from benzene.
In both cases, a crystal was mounted on a glass fiber in a random orientation and a preliminary examination was carried out. Final cell parameters and an orientation matrix were obtained by least-squares refinement. Axial photographs confirmed the cell dimensions and lattice symmetry; ω scans of representative reflections indicated acceptable crystal quality. No absorption correction was applied. Data reduction, structure solution and refinement were performed using SHELXTL-Plus (Sheldrick, 1991). Both structures were solved by direct methods and the remaining non- H atoms were located from subsequent difference Fourier maps. Full-matrix least-squares refinement was carried out by minimizing the function $\Sigma w\left(F_{o}-F_{c}\right)^{2}$. H atoms were included in their idealized positions. O atoms were refined to convergence anisotropically and C atoms isotropically.

This investigation was supported in part through the Missouri Research Assistance Act with a grant from the Monsanto Company; MDL acknowledges receipt of Malinckrodt and UM-St Louis Summer Graduate Fellowships. We particularly thank Lee Brammer for helpful comments and discussions.

[^0]
References

Fujiwara, T., Nanba, N., Hamada, K., Toda, F. \& Tanaka, K. (1990). J. Org. Chem. 55, 4532-4537.

Fujiwara, T., Tanaka, N., Tanaka, K. \& Toda, F. (1989). J. Chem. Soc. Perkin Trans. 1, pp. 663-664.
Fukawa, K.. Harada, S., Kasai, N., Toda, M., Mori, M. \& Toda, F. (1989). Bull. Chem. Soc. Jpn, 62, 2714-2716.

Kaftory, M. (1987). Tetrahedron, 43, 1503-1511.

Kaftory, M.. Tanaka, K. \& Toda, F. (1985). J. Org. Chem. 50, 21542158.

Kaftory, M., Yagi, M., Tanaka, K. \& Toda, F. (1988). J. Org. Chem. 53, 4391-4393.
Popova, A. N. (1959). Uch. Zap. Leningr. Gos. Pedagog. Inst. im. A. I. Gertsena, 160, 131-140; cited in Chem. Abstr. (1961), 55, 18661h.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Strauss, F., Kollek, L. \& Hauptmann, H. (1930). Chem. Ber. 63, 1886-1899.
Toda, F., Tanaka, K., Asao, T., Ikegami, I., Tanaka, N., Hamada, K. \& Fujiwara, T. (1988). Chem. Lett. pp. 509-512.
Toda, F., Tanaka, K., Kai, A., Tanaka, N., Tsugiyama, Y., Hamada, K. \& Fujiwara, T. (1988). Chem Lett. pp. 1375-1378.
Toda, F., Tanaka, K. \& Mak, T. C. W. (1985). Bull. Chem. Soc. Jpn, 58, 2221-2222.
Toda, F., Tanaka, K. \& Mak, T. C. W. (1989). Chem. Lett. pp. 1329-1330.
Toda, F., Ward, D. L. \& Hart, H. (1981). Tetrahedron Lett. 22. 3865-3869.

Acta Cryst. (1994). C50, 120-122

Di-tert-butyl 4-[2-(tert-Butoxycarbonyl)-ethyl|-4-nitroheptanedioate, $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NO}_{8}$

George R. Newkome,* Rajani K. Behera and Gregory R. Baker

Center for Molecular Design and Recognition, Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA

Frank R. Fronczek

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
(Received 2 December 1992; accepted 14 June 1993)

Abstract

The molecule has an extended conformation with approximate mirror symmetry. 15 of the 16 anti torsion angles are in the range 171.7 (3)-179.1 (4) ${ }^{\circ}$ in magnitude, with a mean value of 176.6°. The major deviation from mirror symmetry is the $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ torsion angle in the tert-butoxycarbonylethyl group, which is nearly coplanar with the nitro group, having a magnitude of 163.0 (2) . The $\mathrm{C}-\mathrm{N}$ bond has a length of 1.555 (3) \AA.

\section*{Comment}

During the synthesis of cascade polymers (Newkome, Nayak, Behera, Moorefield \& Baker,

1992; Newkome, Moorefield \& Baker, 1992; Newkome, Behera, Moorefield \& Baker, 1991), it was necessary to shorten the overall iterative procedure for cascade construction. A new building block, di-tert-butyl 4-[2-(tert-butoxycarbonyl)ethyl]4 -nitroheptanedioate was synthesized by a modification of a literature procedure (Bruson \& Riener, 1943). Uniquely, this tert-butyl ester does not undergo facile intramolecular lactam formation (Allen \& Napler, 1950; Butler, 1984) during hydrogenation of the nitro moiety, so its structure determination was undertaken to ascertain the rationale for this timely observation.

The conformation of the molecule has the three tert-butoxycarbonylethyl groups fully extended, and approximate mirror symmetry with a nitro $\mathrm{N}-\mathrm{O}$ bond anti to one of the chains; the $\mathrm{O} 1-\mathrm{N} 1-\mathrm{Cl}-$ C2 torsion angle is $179.0(2)$. The largest deviation from mirror symmetry is in this same chain with torsion angle $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ deviating 17.0 (2) from the anti position. Thermal parameters are generally high for the carbonyl O atoms, the tert-butyl methyl groups and particularly for atom O 2 of the nitro group. The unequal $\mathrm{N}-\mathrm{O}$ distances [1.213 (3) and 1.165 (3) \AA] of the nitro group are a result of the large thermal parameters, with the shorter distance to the atom with the larger thermal parameters, O2. Thus, the true internuclear distances may not be significantly different. The $\mathrm{C}-\mathrm{C}$ distances of the tert-butyl groups average $1.500 \AA$, while the average $\mathrm{C}-\mathrm{C}$ distances along the chains from the central C atom are $1.524,1.520$ and $1.494 \AA$.

Molecules stack along the a direction, with the shorter dimension of the molecule aligned approximately along a. The central atoms Cl are spaced at 5.791 (4) \AA, approximately $a / 2$. No intermolecular distances between heavy atoms are shorter than $3.3 \AA$.

Fig. 1. The title compound with ellipsoids drawn at the 30% probability level.

Experimental

Crystal data
$\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NO}_{8}$
$M_{r}=445.6$
Orthorhombic
Pbca
$a=11.552(2) \AA$
$b=22.165(1) \AA$
$c=20.890(2) \AA$
$V=5349(2) \AA^{3}$
$Z=8$
$D_{r}=1.107 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction:
empirical
$T_{\text {min }}=0.961, T_{\text {max }}=$ 0.999

5204 measured reflections
5204 independent reflections
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54184 \AA$
Cell parameters from 25 reflections
$\theta=25-30^{\circ}$
$\mu=0.66 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Rectangular prism
$0.38 \times 0.35 \times 0.23 \mathrm{~mm}$
Colorless
Crystal source: EtOH (95\%)

3456 observed reflections

$$
[I>\underset{7 \sigma 0}{3 \sigma(I)]}
$$

$\theta_{\text {max }}=75^{\circ}$
$h=0 \rightarrow 14$
$k=0 \rightarrow 24$
$l=0 \rightarrow 26$
3 standard reflections frequency: 167 min intensity variation: -6.4%

Refinement

Refinement on F
$R=0.069$
$w R=0.090$
$S=4.092$
3456 reflections
281 parameters
H -atom parameters not refined
$w=4 F_{o}^{2} /\left[\sigma^{2}(I)+\left(0.02 F_{o}^{2}\right)^{2}\right]$
$(\Delta / \sigma)_{\max }=0.02$
$\Delta \rho_{\text {max }}=0.54 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.38 \mathrm{e}^{-3}$
Extinction correction: $\left(1+g I_{c}\right)^{-1}$ applied to F_{c}
Extinction coefficient: $g=9.9(3) \times 10^{-7}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Tables 2.2B, 2.3.1)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (\AA^{2})

$\boldsymbol{B}_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}$
Ol	0.7520 (2)	0.47184 (9)	0.7990 (1)	7.55 (6)
O2	0.5860 (2)	0.4360 (1)	0.8025 (2)	10.88 (9)
O3	0.4869 (2)	0.2293 (1)	0.7729 (1)	7.71 (6)
O4	0.5992 (2)	0.16943 (9)	0.7128 (1)	5.86 (5)
O5	0.9892 (2)	0.3088 (1)	0.8938 (1)	7.55 (6)
O6	0.8554 (2)	0.2892 (1)	0.9677 (1)	6.48 (5)
07	0.8654 (2)	0.4263 (1)	0.5769 (1)	10.38 (8)
O8	0.6994 (2)	0.4706 (1)	0.5505 (1)	6.30 (5)
NI	0.6837 (2)	0.4312 (1)	0.7898 (1)	4.70 (5)
Cl	0.7321 (2)	0.3720 (1)	0.7601 (1)	3.58 (5)
C2	0.6307 (2)	0.3287 (1)	0.7549 (1)	3.80 (5)
C3	0.6627 (2)	0.2674 (1)	0.7282 (1)	4.48 (6)
C4	0.5733 (3)	0.2209 (1)	0.7411 (1)	4.76 (7)
C5	0.5267 (3)	0.1149 (1)	0.7191 (2)	6.62 (9)
C6	0.4065 (4)	0.1272 (2)	0.6954 (3)	10.1 (1)
C7	0.5900 (4)	0.0714 (2)	0.6757 (3)	11.7 (1)
C8	0.5283 (5)	0.0937 (2)	0.7873 (2)	11.0 (1)
C9	0.8277 (2)	0.3496 (1)	0.8048 (1)	4.01 (6)
C10	0.7896 (2)	0.3249 (1)	0.8694 (1)	4.76 (7)
Cl 1	0.8902 (3)	0.3069 (1)	0.9107 (1)	4.96 (7)
C 12	0.9336 (3)	0.2673 (2)	1.0175 (2)	7.34 (9)
C 13	1.0213 (4)	0.3151 (2)	1.0343 (2)	9.7 (1)

$0.9952(5)$	$0.2099(2)$	$0.9935(3)$	$11.2(1)$
$0.8545(4)$	$0.2541(3)$	$1.0724(2)$	$13.2(2)$
$0.7847(2)$	$0.3901(1)$	$0.6960(1)$	$4.16(6)$
$0.7030(3)$	$0.4204(1)$	$0.6487(1)$	$5.04(7)$
$0.7638(3)$	$0.4378(1)$	$0.5882(1)$	$5.70(7)$
$0.7386(3)$	$0.4924(2)$	$0.4869(1)$	$6.05(8)$
$0.7779(6)$	$0.4416(2)$	$0.4464(2)$	$13.9(2)$
$0.6347(4)$	$0.5208(3)$	$0.4588(2)$	$12.5(1)$
$0.8336(5)$	$0.5372(3)$	$0.4962(2)$	$12.9(2)$

Table 2. Geometric parameters ($\left(\AA,{ }^{\circ}\right)$

O1-N1	$1.213(3)$	C1-C9	$1.528(4)$
$\mathrm{O} 2-\mathrm{N} 1$	$1.165(3)$	$\mathrm{C} 1-\mathrm{C} 16$	$1.525(3)$
$\mathrm{O} 3-\mathrm{C} 4$	$1.214(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.516(4)$
$\mathrm{O} 4-\mathrm{C} 4$	$1.318(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.484(4)$
$\mathrm{O} 4-\mathrm{C} 5$	$1.477(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.499(6)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.555(3)$	$\mathrm{C} 5-\mathrm{C} 7$	$1.511(6)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.518(4)$	$\mathrm{C} 5-\mathrm{C} 8$	$1.500(6)$
$\mathrm{C} 4-\mathrm{O} 4-\mathrm{C} 5$	$122.7(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$112.7(2)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{O} 2$	$121.8(3)$	$\mathrm{O} 3-\mathrm{C} 4-\mathrm{O} 4$	$124.4(3)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1$	$117.2(2)$	$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3$	$124.4(3)$
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 1$	$121.0(2)$	$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 3$	$111.2(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$106.6(2)$	$\mathrm{O} 4-\mathrm{C} 5-\mathrm{C} 6$	$110.2(3)$
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 9$	$106.9(2)$	$\mathrm{O} 4-\mathrm{C} 5-\mathrm{C} 7$	$101.2(3)$
$\mathrm{N} 1-\mathrm{Cl} 1-\mathrm{C} 16$	$105.8(2)$	$\mathrm{O} 4-\mathrm{C} 5-\mathrm{C} 8$	$109.5(3)$
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 9$	$113.4(2)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 7$	$111.5(4)$
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 16$	$114.2(2)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 8$	$112.5(4)$
$\mathrm{C} 9-\mathrm{Cl}-\mathrm{C} 16$	$109.5(2)$	$\mathrm{C} 7-\mathrm{C} 5-\mathrm{C} 8$	$111.3(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$113.9(2)$		
$\mathrm{C} 5-\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 3$	$178.2(3)$	$\mathrm{C} 9-\mathrm{Cl}-\mathrm{C} 16-\mathrm{C} 17$	$-173.1(2)$
$\mathrm{C} 4-\mathrm{O} 4-\mathrm{C} 5-\mathrm{C} 7$	$177.1(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$163.0(2)$
$\mathrm{C} 12-\mathrm{O} 6-\mathrm{C} 11-\mathrm{C} 10$	$178.1(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 4$	$174.8(2)$
$\mathrm{C} 11-\mathrm{O} 6-\mathrm{C} 12-\mathrm{C} 15$	$179.1(4)$	$\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-177.3(2)$
$\mathrm{C} 19-\mathrm{O} 8-\mathrm{C} 18-\mathrm{C} 17$	$-178.4(3)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{O} 6$	$176.2(3)$
$\mathrm{C} 18-\mathrm{O} 8-\mathrm{C} 19-\mathrm{C} 21$	$173.5(3)$	$\mathrm{C} 1-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18$	$178.5(2)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$179.0(2)$	$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18-\mathrm{O} 8$	$-171.7(3)$
$\mathrm{C} 16-\mathrm{Cl} 1-\mathrm{C} 9-\mathrm{C} 10$	$-175.4(2)$	$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	$-178.5(2)$

The structure was solved using RANTAN (Yao, 1981) and refined using the Enraf-Nonius SDP programs (Frenz \& Okaya, 1980). All the H atoms but a few in the methyl groups were clearly evident in difference maps. However, H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}$ distance $0.95 \AA$ and $B_{\text {iso }}=1.3 B_{\text {eq }}$ for the bonded C atom.

This work was supported, in part, by the National Science Foundation.

Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71399 (33 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CR 1056]

References

Allen, S. J. \& Napler, J. G. (1950). US Patent 2502548.
Bruson, H. A. \& Riener, T. W. (1943). J. Am. Chem. Soc. 65, 23.
Butler, D. E. (1984). US Patent 4454327.
Frenz, B. A. \& Okaya, Y. (1980). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
Newkome, G. R., Behera, R. K., Moorefield, C. N. \& Baker, G. R. (1991). J. Org. Chem. 56, 7162-7167.

Newkome, G. R., Moorefield, C. N. \& Baker, G. R. (1992). Aldrichimica Acta, 25, 31-38.
Newkome, G. R., Nayak, A., Behera, R. K., Moorefield, C. N. \& Baker, G. R. (1992). J. Org. Chem. 57, 358-362.
Yao, J.-X. (1981). Acta Cryst. A37, 642-644.

Comment

The title compound, (I), was isolated as an impurity in the 2,4-dinitrophenylhydrazone derivation of a ketone of unknown structure, presumably as a result of the presence of acetone from previous recrystallizations. The structure of (I) was determined to ascertain its identity.

(I)

A search of the Cambridge Structural Database (Allen, Kennard \& Taylor, 1983) for 2,4-dinitrophenylhydrazones yielded 51 compounds for which crystal-structure determinations have been carried out. Those most closely related to the title compound are propanal 2,4-dinitrophenylhydrazone and dimethyl 2-oxopropanedioate 2,4-dinitrophenylhydrazone (Vickery, Willey \& Drew, 1981). Both these compounds exhibit intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds; however, in the former the hydrogen bond is bifurcated, involving an intermolecular

[^0]: Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71404 (29 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CR 1054]

